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Abstract
A simulation of a tensile test of copper crystal along the [001] direction is
performed using the Vienna ab initio simulation package (VASP). Stability
conditions for a uniaxially loaded system are presented and analysed and the
ideal (theoretical) tensile strength for the loading along the [001] direction is
determined to be 9.4 GPa in tension and 3.5 GPa in compression. A comparison
with experimental values is performed.

1. Introduction

In most engineering applications, the strength of materials is controlled by nucleation and
motion of dislocations and microcracks. If such defects were not present, the material would
only fail if the limit of elastic stability were reached. The stress at which this is achieved is an
upper limit of stresses attainable prior to failure and is called the ideal (theoretical) strength.
Until recently, loads of this magnitude were approached in studies of the mechanical behaviour
of whiskers of very pure metals and semiconductors. However, knowledge of the ratio of the
tensile and shear ideal strengths allows the assessment of both the ductile/brittle response and
the crack stability in solids [1]. The ideal strength appears to control both the onset of fracture
and the dislocation nucleation in defect-free thin films and, in particular, in nanostructured
materials that are currently being developed. This has been confirmed most eloquently by
nanoindentation experiments (see e.g. [2] and references therein) which suggest that the onset
of yielding on the nanoscale is controlled by homogeneous nucleation of dislocations in the
small volume under the nanoindenter where stresses approach the ideal strength.

To predict the ideal strength, we have to check the elastic stability criteria under increasing
external load. The criterion which is violated first sets the ideal strength.

Theoretically, the ideal strength was studied in the past using semiempirical approaches
when describing interatomic interactions (see e.g. [3]). However, within such schemes
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parameters are fitted predominantly to equilibrium properties of the material studied and their
transferability to the state when the material is loaded close to its theoretical strength is not
guaranteed. In contrast, ab initio electronic structure calculations can be performed reliably
for variously strained structures and are thus capable of determining the ideal strength of
materials without resort to doubtful extrapolations. Indeed, recently, determination of ideal
strength became possible using ab initio electronic structure methods based on the density
functional theory.

In this paper we study the ideal tensile strength of copper in the [001] direction. This is a
continuation of the previous ab initio investigation [4], where, similarly as in several other ab
initio studies, only one criterion of the mechanical stability, i.e. the positive value of the Young
modulus, was used, and the calculated ideal tensile strength for the [001] loading, 33 GPa,
was more than an order of magnitude higher than the experimental value of about 1.5 GPa
(see [5]). Let us note that studies investigating the ideal strength of copper using the Morse
potential [3] and the embedded-atom method [6] found an elastic instability prior to reaching
the zero value of the Young modulus (i.e., the inflection point in the energy versus strain
curve) at the stresses of 6.97 and 9.82 GPa, respectively, still considerably higher than the
experimental result. Here we simulate a tensile test of copper from first principles for uniaxial
loading in the [001] direction, analysing all stability criteria, and determine the corresponding
ideal tensile strength.

2. Details of calculations

To simulate a tensile test, we first calculate the total energy of the material in the ground state.
In the case of copper, the ground state exhibits the face-centred cubic (fcc) structure. Then,
in the second step, we apply some elongation of the crystal along the loading axis by a fixed
amount ε that is equivalent to the application of a certain tensile stress σ . For each ε, we
minimize the total energy, relaxing the stresses σ⊥1 = σ⊥2 in the directions perpendicular to
the loading axis, i.e. relaxing the perpendicular dimensions of the crystal. Thus, we simulate
a strain-controlled uniaxial loading of the crystal. The stress σ is given by

σ = n

a2

dEtot

dc
= n

a2a0

dEtot

dε
, (1)

where n is number of atoms in the elementary cubic or tetragonal cell (here n = 4), Etot is
the total energy of a crystal per atom, c is the lattice parameter in the loading direction (see
figure 1), and a is the lattice parameter in the directions perpendicular to the loading axis.
Furthermore, a0 is the equilibrium lattice parameter (in the ground fcc state) and ε is the linear
extension defined by the relation ε = c/a0 − 1.

In the case of the uniaxial loading along the [001] direction, we investigate, in fact, the
behaviour of the total energy along the Bain transformation path connecting the body-centred
cubic (bcc) and fcc structures. If we ascribe c/a = 1 to the fcc structure, then the bcc structure
is obtained for c/a = √

1/2. All other structures along this path may be considered either as
face-centred tetragonal (fct) or as body-centred tetragonal (bct) [7, 8]. The Young modulus
for the [001] direction is obtained according to

E[001] = n

a2a0

d2 Etot

dε2
. (2)

Stability conditions expressed in terms of second-order elastic constants were derived
e.g. in [9, 10] for a general system under arbitrary loading. Under uniaxial loading of a
cubic solid along the [001] direction, the symmetry changes to tetragonal and there are six
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Figure 1. The elementary fct cell of uniaxially loaded copper.

independent elastic constants (C11, C12, C13, C33, C44, and C66). The corresponding stability
conditions are [11]

(C33 + σ)(C11 + C12) − 2(C13 − σ/2)2 > 0, (3a)

C11 − C12 > 0, (3b)

C44 + σ/2 > 0, (3c)

C66 > 0. (3d)

Here we use the elastic constants defined according to the energy expansion [12]

E = E(V ) + V
∑

i

σiηi + 1
2 V

∑
i

∑
j

Ci jηiη j + O(η3), (4)

where ηi are components of the Lagrangian strain tensor [13] in the Voigt notation.
In order to test the stability conditions, one can perform a small additional distortion

(a deviation from the main tetragonal path) and check the energy change. Using a set of
primitive translational vectors (i.e. [0, a/2, c/2], [a/2, 0, c/2], and [a/2, a/2, 0] in our case),
the distortion can be described by means of an appropriate Jacobian matrix J as

r = J · rT,

where rT is the vector corresponding to the current state along the tetragonal path and vector
r describes the distorted state.

The stability condition (3a) corresponds to the requirement that E[001] is positive. It is
related to the inflection point in the Etot(c) dependence and was tested in all above-mentioned
previous calculations. The right-hand side of this condition differs from the Young modulus
by a multiplicative factor and the two quantities acquire the zero value simultaneously.

The stability condition (3b) is equivalent to the criterion C22 − C23 > 0 presented in [3]
for [100] tensile loading. Its violation corresponds to a shear instability (vanishing of the
tetragonal shear modulus) when we can expect the bifurcation from the primary deformation
path to a secondary one (where the lattice acquires orthorhombic symmetry). In order to test the
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second stability criterion, the following Jacobian matrix (and corresponding strain matrix) [13]
was used at each point of our tetragonal deformation path:

J =
(√

1 + 2x 0 0
0

√
1 − 2x 0

0 0 1

)
, η =

( x 0 0
0 −x 0
0 0 0

)
.

Under such deformation, the energy of the system (per atom) changes according to the relation
(see equation (4))

�E = V (C11 − C12)x2 + · · · ,
where V = ca2/n is the current volume per atom. This deformation lowers the symmetry
of the crystal to the orthorhombic one and makes our calculations more time-consuming. On
the other hand, the calculated �E(x) curve is symmetric (�E(x) = �E(−x)) and only one
half of the curve has to be computed. With regard to the energy expansion, the tetragonal shear
modulus C ′ = 1

2 (C11 − C12) can be expressed as

C ′ = 1

4V

d2 E

dx2
.

The condition (3c) corresponds to another shear instability related to the C44 modulus.
Using the strain

η =
( 0 0 0

0 0 x
0 x 0

)

one obtains the dependence E(x) leading to

�E = 2V C44x2 + · · · , C44 = 1

4V

d2 E

dx2
.

The stability condition (3d) can be tested using the strain

η =
( 0 x 0

x 0 0
0 0 0

)
.

The energy change of a system under such deformation and the elastic constant C66 can be
expressed as

�E = 2V C66x2 + · · · , C66 = 1

4V

d2 E

dx2
.

For the electronic structure calculations, we utilized the Vienna ab initio simulation
package (VASP) [14] using ultrasoft pseudopotentials [15] as supplied with the code. The
cut-off energy of the plane-wave basis set was 240 eV. The exchange–correlation energy was
evaluated using the generalized-gradient approximation (GGA) with the parametrization of
Perdew and Wang [16]. The 20 × 20 × 20 k-point mesh was used in all our calculations. The
solution was considered to be self-consistent when the energy difference of two subsequent
iterations was smaller than 0.1 meV.

To assess the reliability of our calculations, some quantities were calculated also by means
of the full-potential linearized augmented plane-wave (FLAPW) WIEN97 code described in
detail in [17]. For the exchange–correlation energy, both the local density approximation
(LDA) [18] and the GGA [16] were employed. The muffin-tin radius of copper atoms of
2.0 au was kept constant for all calculations, the number of k-points in the whole Brillouin
zone was set to 15 000, and the product of the muffin-tin radius and the maximum reciprocal
space vector, RMTkmax, was equal to 10. The maximum l value for the waves inside the atomic
spheres, lmax, and the largest reciprocal vector G in the charge Fourier expansion, Gmax, were
set to 12 and 15, respectively.
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ε

ε

Figure 2. Total energy (per atom) of uniaxially deformed copper as a function of the linear extension
ε relative to the energy of the fcc ground state. The vertical lines represent the position of the fcc
(ε = 0) and bcc (ε = −0.205) structures as well as of the fct structure corresponding to the local
minimum (ε = −0.25).

3. Computed results and discussion

Figure 2 shows the total energy of copper as a function of ε during simulated uniaxial tensile
testing along the [001] direction. The curves in figure 2 were constructed by means of a cubic
spline using the values of the total energy (displayed by circles) obtained by VASP GGA
calculations. As expected, the main minimum of the curve corresponds to the fcc lattice
(the ground-state structure). It should be emphasized that the shallow local minimum on
the Etot(ε) curve at ε = −0.248 in figure 2 does not correspond to the bcc structure since
the corresponding c/a ratio is about 0.65. The bcc structure (c/a = √

1/2) is obtained at
ε = −0.205 corresponding rather to the local maximum between the two minima.

Values of the equilibrium lattice constant a0, Young modulus E[001] in the direction
of applied load, tetragonal shear modulus C ′, trigonal shear modulus C44, and maximum
stress σE=0 (calculated according to equation (1)) at the inflection point of the tensile portion
of the Etot(ε) curve are collected in table 1. For comparison, values computed using the
all-electron program code WIEN97 [19] are listed together with experimental data [20–22].
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ε

Figure 3. Stability conditions as functions of the linear extension ε. •: E[001], ♦: C11 − C12,
�: C44 + σ/2, �: C66.

Table 1. Computed values of the lattice parameter a0, Young modulus E[001], shear moduli
C ′ = 1

2 (C11 − C12) and C44 in the equilibrium state (σ = 0), and stress σE=0 at the inflection
point of the tensile portion of the Etot(ε) curve of the fct copper crystal.

WIEN97
VASP
GGA LDA GGA Experiment

a0 (Å) 3.64 3.52 3.63 3.61
E[001] (GPa) 67.9 92.4 74.5 67.8
C ′ (GPa) 25.5 36.4 27.6 25.7
C44 (GPa) 78.3 — 82.0 81.7
σE=0 (GPa) 24.3 32.4 24.1 —

It may be seen that, in the LDA case, the value of the lattice parameter is substantially
lower than the experimental one and computed values of all elastic moduli are significantly
higher. On the other hand, the results of the GGA calculations (obtained by both the WIEN97
and the VASP codes) are in a better agreement with the experimental data. Therefore, all our
following calculations were performed by means of the VASP code and the GGA.

The computed value of the stress at the inflection point obtained by means of WIEN97
code using the LDA is in a very good agreement with the previous result of 33 GPa of [4]
owing to the same approximation being applied. However, the GGA employed together with
both the VASP and the WIEN97 codes yields lower values in a better coincidence with the
result of 23.7 GPa reported in [6].

The equilibrium lattice constant of the bcc structure was obtained from the computed
values of Etot as a function of an atomic volume. Our value of abcc

0 = 2.90 Å is higher than the
result of 2.80 Å reported in [23]. On the other hand, it precisely agrees with the result obtained
recently by [24] and by [25]. The total energy difference between the bcc and fcc structures
is about 36 meV (see figure 2). Slightly higher energy differences of 40 and of 44 meV were
reported in [8] and [23], respectively.

The calculated values of the stability conditions related to the elastic constants of the fct
lattice are displayed as functions of ε in figure 3. Again, the vertical lines represent positions
of bcc and fcc structures. In the region of tensile stresses (ε > 0), the stability condition
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Table 2. Computed values of the stresses σ and the linear extensions ε related to the onset of
instability in uniaxially deformed Cu along the [001] axis in the region of both the tensile and the
compressive loading.

Tension Compression

Instability σ (GPa) ε (−) σ (GPa) ε (−)

E[001] = 0 24.3 0.33 −3.5 −0.09
C11 − C12 = 0 9.4 0.10 — —
C44 + σ/2 = 0 20.7 0.25 — —
C66 = 0 — — −0.5 −0.19

C11 − C12 > 0 is broken as the first case at ε = 0.10, i.e. well before the inflection point of
the Etot(ε) curve (related to the condition E[001] = 0 at ε = 0.33) is reached. The condition
C44 +σ/2 > 0 is also broken before the inflection point (ε = 0.25). The last stability condition
C66 > 0 remains fulfilled over the whole region of computed tensile strains.

On the other hand, the condition related to the inflection point (E[001] > 0) is broken as
a first case in the region of compressive strains (at ε = −0.09). Let us note that E[001] > 0 is
fulfilled for ε < −0.23 again; however, the fourth condition C66 > 0 is broken for ε < −0.20.
Therefore, for bcc Cu, two stability conditions are violated.

The fct structure at ε = −0.25 (corresponding to the shallow minimum in figure 2)
exhibits a positive Young modulus in agreement with the calculations for the epitaxial Bain
path reported by [8] that yield a shallow minimum for bct structure with c/a = 0.927 (this
value of c/a corresponds to setting c/a = 1 for the bcc structure). However, it is unstable
since the condition C66 > 0 is violated.

The computed values of stresses and linear extensions corresponding to the failures of the
tested stability conditions are shown in table 2. The lowest tensile stress of 9.4 GPa related to
breaking the C11 − C12 > 0 condition in the region of tensile loading is considered to be the
theoretical strength of copper crystal under uniaxial tensile loading in the [001] direction. This
value corresponds well to the result of 9.8 GPa computed by [6] using the embedded-atom
method. The corresponding linear extension ε = 0.10 is somewhat smaller than their value
of 0.13. The stress corresponding to the point of breaking the first stability condition under
compression is about 3.5 GPa and the related linear extension is −0.09.

Where do we search for the source of the discrepancy between the calculated and measured
ideal tensile strengths of copper when we suppose that our calculations are correct? First,
some defects in whiskers or imperfections of loading devices cannot be excluded [22].
The experiments were performed about 30 years ago; it would be nice to repeat them
with the powerful technology available today. A thorough interpretation of nanoindentation
experiments could also shed light on this problem. Of course, it is possible that, before violating
the first stability condition, some phonon instability may appear in the tetragonally strained
crystal. Indeed, recent studies on elastic [26] and phonon instabilities [27] of aluminium
confirm the suggestion that this may happen in fcc metals. Therefore, the phonon instabilities
will be the subject of future considerations.

4. Conclusions

In the present paper we investigated the mechanical stability of fcc copper under uniaxial
loading in the [001] direction. In the region of compressive deformations, the stability condition
E[001] > 0 is broken as the first case at the linear extension of ε = −0.09. For the bcc structure
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obtained at ε = −0.205, two stability conditions are already violated. In the region of tensile
deformations, we have found the first occurrence of instability at the linear extension of 0.10
related to vanishing of the tetragonal shear modulus. The corresponding stress of 9.4 GPa
is therefore considered to be the theoretical strength under uniaxial tension. This value is
less than a half of the computed value of σE=0 corresponding to the inflection point of the
E(ε) curve, but it is still substantially higher than the experimental result of 1.5 GPa [5]. As
the defects in whiskers or imperfections of loading device cannot be excluded, we suggest
repeating those experiments.
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[23] Wang L G and Šob M 1999 Phys. Rev. B 60 844
[24] Tang Z, Hasegawa M, Nagai Y and Saito M 2002 Phys. Rev. B 65 195108
[25] Zhou Y, Lai W and Wang J 1993 Phys. Rev. B 49 4463
[26] Li W and Wang T 1998 J. Phys.: Condens. Matter 10 9889
[27] Clatterbuck D M, Krenn C R, Cohen M L and Morris J W Jr 2003 Phys. Rev. Lett. 91 135501


